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Abstract

One knows that a certain geometry exists for a given pressure loss in a duct, where maximum heat transfer
occurs. In this work, the maximum heat transfer and the optimum geometry for a given pressure loss have been
calculated for forced convective heat transfer in di�erent duct shapes for laminar ¯ow conditions. Simple equations
which enable calculation of these optimum values for all Pr numbers and for all shapes of duct cross-sectional areas

have been derived. # 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Regenerators and recuperators used for energy

recovery systems consist of small-diameter ducts, in

which laminar ¯ow prevails. These ducts can have

di�erent cross-sectional areas. One knows from pre-

vious investigations that an optimum spacing exists

for a parallel plate channel in which forced convec-

tion [1] or natural convection [2,3] takes place.

However, there exists no investigation about the opti-

mum shape of cross-sectional areas. In this work, the

optimum hydraulic diameter and the maximum heat

transfer in ducts of arbitrary cross-sectional area are

investigated.

2. Derivation of equations for optimum dimensions

We consider constant wall temperature and seek the
maximum heat transfer for a given pressure drop.
The heat transfer in a duct can be formulated as

_Q � rcp _V�Ti ÿ Te � �1�

where r, cp, _V, Ti and Te, respectively, are density,
speci®c heat, volume ¯ow rate, mean inlet temperature

and mean exit temperature of the ¯uid.
We are interested in the heat transfer per cross-sec-

tional area;

_qA �
_Q

A
�2�

Then it follows from Eq. (1);

_qA � rcpum�Ti ÿ Te � �3�
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Here um is the mean ¯uid velocity. We de®ne the fol-

lowing dimensionless numbers:

y � Te ÿ Tw

DT
�4�

u� � um

up
�5�

Here up and DT are de®ned as follows:

DT � Ti ÿ Tw �6�

up �
�������������
2Dp=r

p
�7�

in which Tw and Dp, respectively, are wall temperature

and total pressure loss in the duct.
Using the de®nitions above, one gets from Eq. (3):

q�A � u��1ÿ y� �8�

with

q�A �
_qA

rcpupDT
�9�

u� and y should be calculated using the equation for

pressure loss and heat transfer in the duct, respect-
ively.
The pressure drop in a duct Dp consists of frictional

and incremental pressure loss Dpf and local pressure

loss (inlet and outlet) Dpi:

Dp � Dpf � Dpl �10�

Local pressure loss Dpl can be calculated from:

Dpl � Kl

ru2m
2

�11�

Kl is to be determined using the data from White [4]
and Brauer [5] according to the following relationship:

Kl �
�3ÿ e��1ÿ e�2

2ÿ e
�12�

In this equation, e is the porosity of heat exchanger
ducts. e can be envisaged as the ratio of the ¯uid vel-
ocity before entering the duct to that in the duct. If

e � 0 (similar to a duct connected between two large
tanks), we have Kl � 1:5, and for e � 1 (no contraction
at the inlet and no expansion at the outlet), we have
Kl � 0.

With the de®nition of dimensionless pressure loss:

Dp� � Dp
ru2m=2

�13�

Eq. (10) yields

Dp� � Dp�f � Kl �14�

Nomenclature

a thermal di�usivity
A cross-sectional area
cp speci®c heat

d diameter
f factor
h heat transfer coe�cient

k thermal conductivity
K pressure drop number
L length of duct

n number of ducts
Nu Nusselt number
P periphery
Pr Prandtl number
_q heat ¯ux
_Q heat ¯ow
Re Reynolds number

T temperature
u velocity
_V volume ¯ow rate

x axial coordinate
z dimensionless axial coordinate

Greek symbols
Dp pressure drop
DT temperature di�erence

F heat transfer factor
e porosity
j shape factor for pressure loss

n kinematic viscosity
y dimensionless temperature
r density

Superscripts and Subscripts
� dimensionless
e exit
f frictional

h hydraulic
i inlet
l local

m mean
o optimum
w wall
1 for n41 or z41
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Pressure loss Dpf , which includes the frictional pressure

loss and the pressure loss due to velocity pro®le devel-
opment in the developing section of the duct, can be
determined for ducts of di�erent shapes using the

equation given by Yilmaz [6]:

Dp�f � 64jx �

� 13:766x �0:5"
1� 13:95jx �0:5 �

�
13:766

K

�3

x �1:5

#1=3
�15�

where j and K are the shape factor and the incremen-

tal pressure drop number, respectively. They can be
calculated from:

j � 1� j1 ÿ 1

1� 0:33d �2:25=�nÿ 1� �16�

K � 1:33

1� �1:33=K1 ÿ 1�=�1� 0:74d �2=�nÿ 1�� �17�

j1 and K1 are given by the equations below:

j1 �
3

8
d �2�3ÿ d � � �18�

K1 � 12

5
�3ÿ d � �2

�
9

7

3ÿ d �

7ÿ 3d �
ÿ 1

5ÿ 2d �

�
�19�

in which d � and n are dimensionless numbers to
describe the shape of the duct cross-section:

d � � dh

dmax

�20�

n � P

Ph

� A

Ah

�21�

where dh is the hydraulic diameter of the duct, Ph and
Ah are, respectively, the periphery and the cross-sec-
tional area of the circular duct having the hydraulic di-

ameter dh, and dmax is the maximum diameter of the
circle which inscribes the actual cross-section and is
shown in Fig. 1.

The dimensionless duct length x� used in Eq. (15) is
de®ned below:

x � � L

dh

1

Re
�22�

where Reynolds number is

Re � umdh

n
�23�

Eq. (22) can be rewritten using Eqs. (5) and (23) as

x � � 1

u�d �2h

�24�

with

d �h �
dh�������������

nL=up
p �25�

Substituting Eq. (15) into Eq. (14), one gets the follow-

ing relationship:

64jx � � 13:766x �
0:5"

1� 13:95jx �0:5 �
�
13:766

K

�3

x �1:5
#1=3

� Kl � Dp�

�26�

Using the de®nitions in Eqs. (5), (7), (24) and (25), we

then get Eq. (27) from Eq. (26):

64j
u�

d �2h

� 13:766u�1:5=d �h"
1� 13:95j

u�0:5d �h
�
�
13:766

K

�3
1

u�1:5d �3h

#1=3

� Klu
�2 � 1

�27�

It can be seen from this equation that, the dimension-
less velocity u� depends only on d �h for a given shape
of the cross-section.

Fig. 1. De®nition of dmax.
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Besides u�, we need the dimensionless temperature y
to get q�A from Eq. (8). The dimensionless temperature

y is to be calculated from

y � exp� ÿ 4Nu z� �28�

where z is the dimensionless axial coordinate and Nu is
Nussselt number. z is de®ned as follows:

z � x �=Pr �29�

in which Pr is Prandtl number.
In ducts of arbitrary cross-sectional area, for devel-

oped ¯ow and developing thermal conditions, Yilmaz

and Cihan [7] have given the following equation for
Nusselt number Nu1:

Pr41:Nu1 � Nu1,1

� 1:615F=�z=j�1=3241� 1:88

 
zNu31,1
jF3

!
� 3:93

 
zNu31,1
jF3

!4=3
351=2

where

Nu1,1 � 3:657

�
1� �1ÿ 1=n��

0:5155
d �

2

3ÿ d �
ÿ 1

�
� DF

� �31�

DF � DFmax
0:95�nÿ 1�0:5

1� 0:038�nÿ 1�3
�32�

DFmax � 7� 10ÿ3d �8

�1� 10d �ÿ28 ��1� 64� 10ÿ8d �28 �0:5
�33�

F � 1�
�
3�d �=2�7=8=�1� d � � ÿ 1

�
1� 0:25=�nÿ 1� �34�

For developing ¯ow conditions and z40, the shape of

the duct has no in¯uence on Nusselt number and
Nusselt number Nuo is well described by the following
equation:

z40
Pr 6� 1 :Nuo � 0:6774zÿ0:5

fPr1=6
�35�

The function f is dependent on Prandtl number and

can be formulated using the data of Gauler [8] and
Merk [9] as follows:

f �
�
1� 0:105

Pr� ������
Pr
p

=3
� 0:0468

Pr

�1=6

�36�

The following equation for developing ¯ow and devel-
oping thermal condition can be used:

Nu � ÿNu41 �Nu4o
�1=4 �37�

This equation is compared with the nearly exact
equation given by Shome and Jensen [10] for simul-
taneously developing ¯ow and heat transfer in circular

tubes for di�erent Prandtl numbers �Pr � 0:1ÿ1�
and the maximum di�erences are found as ÿ1:8=5:1%.
For other shaped ducts, Eq. (37) produces good results

too [11].

3. Equations for long �d �h40� and short ducts �d �h41)

In the following sections, velocity, Nusselt number
and the amount of heat transferred for two limiting
cases (long and short ducts) are considered.

3.1. Velocity u�

For long ducts �d �h40� it follows from Eq. (27):

d �h40:u� � d �2h

64j
�38�

This equation means that frictional pressure loss pre-
vails for long ducts. For short ducts we should dis-
tinguish between two cases. For the ideal case, there is
no contraction and expansion losses, so that Kl � 0.

For this case, Eq. (27) yields

d �h41
Kl � 0

:u� � 0:1741d �2=3h �39�

In the case of Kl 6� 0, it follows:

d �h41
Kl 6� 0

:u� � K ÿ1=2l �40�

3.2. Nusselt number

For Nusselt number, we can again distinguish
between two cases. Eq. (35) can be used directly for

developing ¯ow conditions �Pr 6� 1):

d �h41
Pr 6� 1 :Nu � 0:6774zÿ0:5

fPr1=6
�41�

For developed ¯ow conditions, Eq. (30) yields

d �h41
Pr41 :Nu � 1:615Fj1=3zÿ1=3 �42�
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3.3. The amount of heat transferred

3.3.1. Long ducts

In long ducts one can assume that y40 and, there-
fore, Eq. (43) can be obtained from Eqs. (8) and (38):

d �h40:q�A � 1:5625� 10ÿ2d �2h =j �43�

3.3.2. Short ducts
For short ducts, the mean dimensionless temperature

y can be obtained from Eq. (28) as

z40:y � 1ÿ 4Nu z �44�
Introducing Eq. (44) into Eq. (8), Eq. (45) can be

obtained for the amount of heat transferred:

z40:q�A � 4u�Nu z �45�

Fig. 2. Variation of dimensionless velocity u � with dimensionless hydraulic diameter d �h for di�erent values of porosity e. (a) e � 1;

(b) e � 0:9; (c) e � 0:8; (d) Eq. (38); (e) Eq. (39); (f) Eq. (40).

Fig. 3. Variation of dimensionless heat transfer per cross-sectional area q�A with dimensionless hydraulic diameter d �h for (a) equilat-

eral triangular duct �n � 1:654� and (b) triangular duct with n41 for Kl � 0 and Pr � 0:7.
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Using Eqs. (39), (41) and (42), one gets the following

equations for the practically important case Kl � 0:

d �h41
Pr 6� 1
Kl � 0

:q�A �
1:1306

fPr2=3
d �ÿ2=3h �46�

d �h41
Pr41
Kl � 0

:q�A � 3:607
j1=3F
Pr2=3

d �ÿ10=9h �47�

d �h41
Pr40
Kl � 0

:q�A �
1:883

Pr0:5
d �ÿ2=3h �48�

4. Discussion of the results

In Fig. 2, dimensionless velocity u� is given as a
function of dimensionless hydraulic diameter d �h for
equilateral triangular duct for various values of poros-
ity e. The curves a, b and c are for e � 1,0:9 and 0.8,

respectively. The limiting curve d for d �h40 is inde-
pendent of e according to Eq. (38). The other limiting
curve e is valid for e � 1 and d �h41. This curve is

obtained from Eq. (39). The limiting curves f calcu-
lated using Eq. (40) for d �h41 and e 6� 1 are horizon-
tal lines, because the frictional part of the pressure loss

can be neglected.
Variation of dimensionless heat transfer per cross-

sectional area q�A with dimensionless hydraulic diam-

eter d �h is illustrated in Fig. 3 for two di�erent triangu-

lar ducts for Pr � 0:7 and Kl � 0. Curve a represents
the equilateral triangular duct(n = 1.654) and curve b
represents the triangular duct with n41. It is clear
from Fig. 3 that, there is no substantial di�erence

between various triangular ducts. The asymptotic
curves shown on the ®gure are calculated from Eqs.
(43) and (46).

In Fig. 4, q�A is given as a function of d �h for rec-
tangular ducts for Pr � 0:7 and Kl � 0. Curve a is
valid for a square duct �d � � 1, n � 1:273� and curve b

is valid for a parallel plate duct �d � � 2, n � 1). As
can be seen from the ®gure, the maximum value of q�

for a parallel plate duct is greater than that for a

square duct. Curves a1 and b1 seen in Fig. 4, are
asymptotic curves for d �h40 for square and parallel
plate ducts, respectively. They are calculated using Eq.
(43):

a1:q
�
A � 1:762� 10ÿ2d �2h �49�

b1:q
�
A � 1:042� 10ÿ2d �2h �50�

Curve c is given for the short duct asymptotic case
�d �h41� according to Eq. (46) for Pr � 0:7 and
Kl � 0:

c:q�A � 1:396d �hÿ2=3 �51�

This curve does not depend on the duct shape, and

therefore, it is valid for both square and parallel plate
ducts.
For the middle values of d �h �5Ed �hE25), the curves

Fig. 4. Variation of dimensionless heat transfer per cross-sectional area q�A with dimensionless hydraulic diameter d �h for square

duct (a), and parallel plate duct (b) for Kl � 0 and Pr � 0:7. a1: Eq. (49); a2: Eq. (52); b1: Eq. (50); b2: Eq. (53); c: Eq. (51).
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a and b ®rst approach the corresponding limiting
curves a2 and b2 which are valid for Pr41. These
curves are calculated from Eq. (47):

a2:q
�
A � 3:977d �ÿ10=9h �52�

b2:q
�
A � 5:237d �ÿ10=9h �53�

After this region, curves a and b approach the limiting
curve c which represents the case for Pr � 0:7.
Therefore, one can see easily why the maximum value
of q�A �q�A,o� for the parallel plate duct is greater than
that for the square duct.

In Figs. 5 and 6, the optimum values of dimension-
less hydraulic diameter d �h �d �h,o� at which dimension-
less heat transfer per cross-sectional area q�A has a

maximum value of q�A,o and q�A,o are given, respectively.

For triangular ducts, d �h,o does not change signi®cantly
with n, and q�A,o decreases slightly with increasing n, as
expected. In the case of rectangular ducts, d �h,o and

q�A,o increase with n increasing and the reason for it is
explained in the discussion of Fig. 4.
The in¯uence of e on d �h,o and q�A,o for an equilateral

triangular duct is given in Fig. 7 for Pr � 0:7.
Decreasing the value of e results in increased pressure
loss because of contraction and expansion. Therefore,

velocity and heat transfer will decrease. However, for
some practical applications, such as rotary regenera-
tors and plate heat exchangers, the dependence of vel-
ocity and heat transfer on e can be ignored.

The values for d �h,o and q�A,o are given in Table 1 for
equilateral triangular, square, circular and parallel
plate ducts for di�erent Pr numbers.

In Fig. 8, in¯uence of Pr number on d �h,o and q�A,o
for an equilateral triangular duct is shown. As it can
be seen from this ®gure, d �h,o and q�A,o both decrease

with the increase of Pr number. d �h,o can be described
with a maximum deviation of 35% for all Pr numbers
and all shapes of ducts (including the examples given
in Table 1) by Eq. (54):

d �h,o � 6:0j3=8Prÿ1=4
�
1� 0:01=Pr2

�1=16 �54�

Using d �h,o obtained from Eq. (54) one can get u� itera-
tively from Eq. (27) and calculate z, and then Nu and

y from Eqs. (29), (37) and (28), respectively. Knowing
these values q�A,o can be determined from Eq. (8)
almost exactly, because q�A,o is not very sensitive to d �h
around d �h,o. The following equation can be used to get
approximate values of q�A,o for all Pr numbers and all
shapes of ducts:

q�A,o �
0:335j1=4Prÿ1=2ÿ

1� 0:47jÿ1=3=Pr
�1=4 �55�

Fig. 5. Variation of optimum dimensionless hydraulic diam-

eter d �h,o with the parameter 1ÿ 1=n for rectangular duct (a)

and triangular duct (b) for Pr � 0:7 and Kl � 0.

Fig. 6. Variation of maximum dimensionless heat transfer per

cross-sectional area q�A,o with the parameter 1ÿ 1=n for rec-

tangular duct (a) and triangular duct (b) for Pr � 0:7 and

Kl � 0.

Fig. 7. Variation of d �h,o and q�A,o with porosity e for equilat-

eral triangular duct for Pr � 0:7 (a: d �h,o; b: q
�
A,o).
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This equation reproduces the numerical values with an

accuracy of 35%. From the last two equations, it can

be considered that d �h,o and q�A,o are functions of only

Prandtl number Pr and the shape factor j.
In the work of Bejan and Sciubba [1], optimum

values d and maximum values q 0 � are given for a par-

allel plate duct. The following relationships are valid

between these parameters and the dimensionless par-

ameters used in the present work:

d � d �h
21=4

Pr1=4 �56�

q 0 � � 21=2q�APr
1=2 �57�

The values of d and q 0 � for parallel plates given by

Bejan and Sciubba are compared with the values deter-
mined from Eqs. (54) and (55) and numerical values
obtained in this work in Table 2.

Table 1

Optimum d �h values �d �h,o� and maximum values of q�A �q�A,o� for di�erent ducts and Pr numbers for Kl � 0

Duct Pr 0.1 0.7 1 7 10 50 100

Equilateral triangular d �h,o 10.460 5.850 5.37 3.425 3.175 2.135 1.778

q�A,o 0.6192 0.3227 0.2809 0.119 0.1006 0.0457 0.0323

Square d �h,o 10.575 6.000 5.512 3.500 3.225 2.187 1.837

q�A,o 0.6413 0.3355 0.2918 0.123 0.1039 0.0471 0.0334

Circular d �h,o 11.125 6.437 5.912 3.812 3.500 2.375 1.987

q�A,o 0.6684 0.3490 0.3033 0.128 0.1077 0.0489 0.0346

Parallel plate d �h,o 13.137 7.825 7.162 4.462 4.087 2.737 2.312

q�A,o 0.7935 0.3980 0.3421 0.138 0.1161 0.0523 0.0370

Fig. 8. Variation of d �h,o andq�A,o with Pr for equilateral triangular duct for K1 � 0 (a: d �h,o; b: q
�
A,o).

Table 2

Comparison between the values obtained in this work, calculated numerically and by Eqs. (54) and (55) and the values given by

Bejan and Sciubba

d q 0 �

Pr 0.72 6 20 100 1000 0.72 6 20 100 1000

This work (numerical) 6.016 6.102 6.121 6.148 6.124 0.472 0.516 0.522 0.524 0.524

Eqs. (54) and (55) 5.881 5.874 5.874 5.874 5.874 0.468 0.516 0.522 0.524 0.524

Bejan and Sciubba [1] 6.066 6.155 6.156 6.110 6.050 0.479 0.522 0.527 0.526 0.523
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For the given range of Pr numbers, the values given
by Bejan and Sciubba are in good agreement with the

values calculated from Eqs. (54) and (55). However, it
is not possible to make a comparison for ducts of
other shapes, since there is no available study.

5. Conclusions

The result of this investigation is that for a given
pressure loss and for a certain Prandtl number, both

maximum dimensionless heat ¯ux q�A,o and optimum
dimensionless hydraulic diameter d �h,o increase with
increasing values of the duct shape factor j. With the
equations derived one can easily determine the opti-

mum dimensions of ducts of arbitrary cross-sectional
area.
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